Acta Cryst. (1962). 15, 1054

The crystal structures of cobalt molybdate CoMoO_{4} and nickel molybdate NiMoO_{4}. By G. W. Smith, The British Petroleum Company Limited, Petroleum Division, BP Research Centre, Chertsey Road, Sun-bury-on-Thames, Middlesex, England
(Received 2 May 1962)

The commercially available compound labelled cobalt molybdate gives the same powder diffraction pattern as the precipitate that is formed when solutions of a cobalt salt and normal sodium molybdate are mixed. On heating this precipitate, a phase change occurs which appears to be complete at about $700^{\circ} \mathrm{C}$., and further prolonged heating to $1100{ }^{\circ} \mathrm{C}$. shows no additional change. Chemical analysis of the final product gives the formula as CoMoO_{4}. This compound can also be prepared by roasting at $750-800{ }^{\circ} \mathrm{C}$. stoichiometric proportions of anhydrous cobalt chloride and normal sodium molybdate. Both preparations yield an apparently black compound, which when ground in a mortar turns to an olive green colour. Under polarized light the colour is blood red.

Analysis of the $\sin ^{2} \theta$ values on a powder photograph yielded a tetragonal unit cell which satisfied many of the reflexions. The compound was also frequently found in the melts from which orthorhombic cobalt molybdate was grown (Smith, 1960) and on occasions, single crystals which were shiny and almost black in appearance were present. The X-ray examination of these crystals revealed unusual latticegeometry which accounted for the simplicity of the powder photographs. The crystals had prismatic habit with ill-formed faces and a rotation photograph about the prism axis, c, showed even layer intensities to be very strong and odd layer intensities weak indicating pseudo-halving. The c spacing was $7 \cdot 71 \pm 0 \cdot 01 \AA$. Zero and upper layer equi-inclination Weissenberg photographs taken with Mo $K \alpha$ radiation about c, for $l=0$ to 10 , gave the following information.
(i) On zero and even layers the reflexions showed a wide range of intensity but were mostly very strong. On odd layers nearly all reflexions were weak and of almost uniform intensity.
(ii) Even layers showed symmetry 4 mm . with two very prominent central lattice rows, 90° apart, present for $l=0,4,8$ but absent for $l=2,6,10$. If these are taken as a_{1}^{*} directions, the spacings along these rows, as measured with $\mathrm{Cu} K \alpha$ radiation from zero-layer photographs about c and each a_{1} axis, were not detectably different and corresponded to a spacing of $a_{1}=12.53 \pm$ $0.01 \AA$. A second but less prominent set of central lattice rows, a_{2}^{*}, at 45° to a_{1}^{*}, was present on all even layers. $a_{2}=8 \cdot 86 \pm 0 \cdot 01 \AA$.
(iii) Odd-layer photographs showed only one central lattice row, along one of the a_{2}^{*} directions, about which only mirror-plane symmetry existed.
(iv) Every layer showed the same non-systematic absences and intensity distribution, apart from an overall scale factor, with the fourth layer above it, i.e. layers for which $l=0,4,8$ were identical, as were those for $l=1,5,9 ; l=2,6,10$; and $l=3,7$.

Thus the structure is pseudo-tetragonal but the true symmetry is only monoclinic with its a^{*} along one a_{2}^{*} axis and its b^{*} along the other a_{2}^{*} axis.

The reappearance of two central lattice rows on all even layers is explained by the staggering of the layers of the reciprocal lattice in such a way that the origin points of the even layers lie directly over the points $h 00$ along $a^{*}\left(=a_{2}^{*}\right)$ whilst the origin points of the odd

Fig. I. Reciprocal lattice layers perpendicular to c axis. Only reflexions allowed by space group are indicated.

- R.L. points for layers $l=0,4,8$.
\times R.L. points for layers $l=2,6,10$.
A R.L. points for layers $l=1,5,9$.
- R.L. points for layers $l=3,7$.

Fig. 2. h0l plane of reciprocal space showing the staggering of $h k l$ layers relative to the $h k 0$ layer.

Table 1. X-ray powder data
$\mathrm{Cu} K x$ radiation

	CoMOO_{4}			NiMoO_{4}				CoMoO_{4}			NiMoO_{4}		
$h k l$	$\sin ^{2} \theta_{c}$	$\sin ^{2} \theta_{0}$	I_{R}	$\sin ^{2} \theta_{c}$	$\sin ^{2} \theta_{0}$	I_{R}	$h k l$	$\sin ^{2} \theta_{c}$	$\sin ^{2} \theta_{0}$	I_{R}	$\sin ^{2} \theta_{c}$	$\sin ^{2} \theta_{0}$	I_{R}
110 *	0.0152	$0.0154 *$	70	0.0155	$0 \cdot 0159 *$	70	150]*	$0 \cdot 1971$	0-1974*	39	$0 \cdot 2020]$	0.2024*	25
1117*	0.0194	$0 \cdot 0196$ *	10	$0 \cdot 0198$	0.0202^{*}	5	510]*	$0 \cdot 1971]$			0.2020		
$20 \overline{1}$ *	0.0269	0.0267*	20	0.0275	0.0275*	20	15]	0.2013	0.2005	5			
200]*	$0.0303]$	0.0303*	5	0.03117	0.0307*	5	151	0.2165	0.2169	15			
020 ${ }^{*}$	$\left.{ }_{0} 0.0303\right]$			$\left.\begin{array}{l} 0.0311 \\ 0.0311 \end{array}\right]$			024	$0.2187]$	0.2194	15	$0.2229]$	$0 \cdot 2230$	25
111 *	0.0345	0.0353^{*}	5	0.0353	0.0360*	5	424	$0 \cdot 2187$]			$0 \cdot 2229$]		
021 *	0.0421	0.0428*	20	0.0431	0.0438*	20	441]	$0 \cdot 2241$	0.2249	15			
$11 \overline{2}{ }^{*}$	$0.0471]$	0.0478*	50	0.0479	$0 \cdot 048{ }^{*}$	50	${ }^{04} \overline{3} \overline{3}$	${ }_{0}^{0.2273}$	0.2287*	25	0.2322	0.2337*	30
$20 \overline{2}$ *	0.0471			0.0479			152	0.2291 0.2291			0.2344 0.2344 0.		
002	$0.0471]$			$0 \cdot 0479$]			332	$0 \cdot 2291$			0.2344		
$2017{ }^{*}$	$0.0573]$	0.0585*	5	0.05867	0.0593*	5	$402{ }^{*}$	0.2291			0.2344		
$22 \overline{1}$]*	0.0573]			0.0586			$44 \overline{2}$	0.2291			0.2344		
220 *	0.0607	0.0611*	100	$0 \cdot 0622$	0.0628*	100	${ }_{602}^{532}$ *	0.2291 0.2291			0.2344 0.2344		
$130]^{*}$	0.0758]	0.0763*	5				531]		$0 \cdot 2321$	25		$0 \cdot 2368$	30
310 *	0.0758]						114	0.23397	0.2321		0.23847	0.2368	30
$022{ }^{*}$	0.0774	0.0777*	40	0.07907	0.0794*	50	$13 \overline{4}$	0.2339			$0 \cdot 2384$		
112 *	0.0774			0.0790			$33 \overline{4}$	0.2339			$0 \cdot 2384$		
$22 \overline{2}$ *	0.0774			0.0790			$51 \overline{4}$	0.2339]			$0 \cdot 2384$		
312 ${ }^{*}$	0.0774			0.0790			$60 \overline{1}$				$0 \cdot 2451$	0.2432	5
131 ${ }^{\text {\% }}$	0.0800	0.0792*	40	0.0819	0.0807*	50	$60 \overline{3}$	0.2424	0.2424*	5	0.2477	0.2485	5
131 *	$0 \cdot 0952$	$0 \cdot 0966$ *	5				440 *	0.2426			0.2487		
$20 \overline{3}$	$0 \cdot 0981$						205	0.2489	0.2501	5			
$11 \overline{3}$	0.0984						313	$0 \cdot 2500]$			$0 \cdot 2555]$	0.2549	5
$132{ }^{*}$	0•1078	0•1081*	20	$0 \cdot 11017$	0•1105*	20	$53 \overline{3}]$	$0 \cdot 2500]$			$0 \cdot 2555]$		
$202{ }^{*}$	0.1078			0.1101			$31 \overline{5}$	0.2565	$0 \cdot 2577$	40			
40드*	$0 \cdot 1078$]			$0 \cdot 1101]$			$44 \overline{3}$	$0 \cdot 2576$					
311 *	$0 \cdot 1103$	0.1092*	20	$0 \cdot 1130$	0.1120*	30	350	$\left.0_{0.2578}^{0.2578}\right]$			0.2642	$0 \cdot 2650$	30
$22 \overline{3}$	$0 \cdot 1211$	0.1217*	40	0.1234	0•1249*	30	$530]$	$0 \cdot 2578$			$0 \cdot 2642$]		
$400{ }^{*}$	$0 \cdot 1213]$			$0 \cdot 1243]$			${ }^{152} 35$	0.2594 0.2594 0.259	$0 \cdot 2593$	40	$\left.\begin{array}{l} 0.2655 \\ 0.2655 \end{array}\right]$	0.2677	25
040 *	$0 \cdot 1213$]			$0 \cdot 1243$]			352	0.2594 0.2594 0.259			$\begin{aligned} & 0.2655 \\ & 0.2655 \end{aligned}$		
$041{ }^{*}$	$0 \cdot 1331$	0.1328*	5				$62 \overline{2}$	$0 \cdot 2594$			$0 \cdot 2655$		
42] ${ }^{*}$	$0 \cdot 1331$						$40 \overline{5}$				0.2686		
$02 \overline{3}]$	$0 \cdot 13637$	0.1368*	70	$0 \cdot 1390]$	0.1404*	40	115	0.2716	0.2736	30			
$40 \overline{3}]$	$0 \cdot 1363]$			$0 \cdot 1390$]			$62 \overline{3}$	$0 \cdot 2728$					
330 *	$0 \cdot 1365$			$0 \cdot 1399$			6007	$0 \cdot 2729]$			$0 \cdot 27977$	0.2801	15
$132{ }^{*}$	$0 \cdot 13817$			$0 \cdot 14127$			060	0.2729]			0.2797		
$\left.222{ }^{2}\right)_{*}^{*}$	0.1381			$0 \cdot 1412$								$0 \cdot 2859$	10
332]*	0.1381]			$0 \cdot 1412$			${ }^{204}$				0.2850 0.2850	$0 \cdot 2859$	10
$24 \overline{1}$	$0 \cdot 1482$	$0 \cdot 1483$	10	0.1519	$0 \cdot 1518$	10	$24 \overline{4}$				$0 \cdot 2850$]		
420]*	$0 \cdot 1516]$	0.1520*	10		0.1561*	10	$15 \overline{3}$				$0 \cdot 2866$		
240]*	0.1516]			$\left.\begin{array}{l} 0.1004 \\ 0.1554 \end{array}\right]$			$\left.\begin{array}{l}061 \\ 441\end{array}\right]$	$\left.\begin{array}{l} 0.2847 \\ 0.2847 \end{array}\right]$	$0 \cdot 2843$	15	$\left.\begin{array}{l} 0.2917 \\ 0.2917 \end{array}\right]$	0.2907	5
204				$0 \cdot 1607$	$0 \cdot 1626$	30	441 351	$0 \cdot 2847$]			$0 \cdot 2917]$ 0.2995		
$13 \overline{3}$				$0 \cdot 1623$			$\begin{aligned} & 35 \overline{1} \\ & 425 \end{aligned}$	0.2944	$0 \cdot 2954$	25	$\begin{aligned} & 0 \cdot 2995 \\ & 0.2996 \end{aligned}$	$0 \cdot 2999$	20
401	$0 \cdot 1634$	$0 \cdot 1622$	30				134	0.29457			$0 \cdot 3006]$		
	$0 \cdot 16847$	$0 \cdot 1687$	5				$53 \overline{4}$ -	$0 \cdot 2945$]			$0 \cdot 3006$		
$24 \overline{2}$	$0 \cdot 1684$						353	0.2955					
312	$0 \cdot 1684$						$51 \overline{5}$	0.3020	$0 \cdot 3025$	25			
$51 \overline{2}$	0.1684						243	0.3031					
$331]$	$0 \cdot 17107$	$0 \cdot 1717$	5				260	$0.3033]$			$0.3108]$	$0 \cdot 3103$	10
511	0.1710						620	$0 \cdot 3033$]			$0 \cdot 3108$]		
114	$0 \cdot 1732$			0.1762]	$0 \cdot 1773$	10	3527	$0 \cdot 35047$	0.3517	5			
$31 \overline{4}$	0.1732			$0 \cdot 1762$			442	$0 \cdot 3504$					
$33 \overline{3}$	$0 \cdot 1742$	$0 \cdot 1756$	5	$0 \cdot 1778$			$55 \overline{2}$	0.3504					
241	$0 \cdot 1786$	$0 \cdot 1793$?	$0 \cdot 1829$	$0 \cdot 1832$	10	${ }_{5451}$	0.3504 0.3529					

Table 1 (cont.)

	CoMoO_{4}			NiMoO_{4}			hkl	CoMoO_{4}			NiMoO_{4}		
hkl	$\sin ^{2} \theta_{c}$	$\sin ^{2} \theta_{0}$	I_{R}	$\sin ^{2} \theta_{c}$	$\sin ^{2} \theta_{0}$	I_{R}		$\sin ^{2} \theta_{c}$	$\sin ^{2} \theta_{0}$	I_{R}	$\sin ^{2} \theta_{c}$	$\sin ^{2} \theta_{0}$	I_{R}
$621]$	$0 \cdot 3605$	$0 \cdot 3603$	15				205	$0 \cdot 4005$	$0 \cdot 3999$	10			
$641]$	$0 \cdot 3605$						$64 \overline{4}$	$0 \cdot 4007]$					
$53 \overline{5}$	$0 \cdot 3626$						244	$0 \cdot 4007]$					
${ }^{20} \overline{6}^{6}$	0.36337							$0 \cdot 4110]$	$0 \cdot 4118$	25			
$31 \overline{6}$ 40	0.3633 0.3633						${ }_{17 \overline{2}}^{602}$	0.4110 0.4110	$0 \cdot 4118$	25			
063	$0 \cdot 3789$	$0 \cdot 3786$	25				335	$0 \cdot 4384$	$0 \cdot 4397$	20			
5507	$0 \cdot 3791$						443	$0 \cdot 4396$					
170	$0 \cdot 3791$						730	$0 \cdot 43977$					
710	$0 \cdot 3791$						370]	$0 \cdot 4397$					

* Reflexions and indices used in least squares analysis. Bracketed reflexions have identical θ values.
Relative intensities I_{R} estimated visually.
layers lie over the midpoints between the $h 00$ points. From the single-crystal photographs this holds for the ten layers examined. It leads to a special relationship between a, c and β, for, as the layer for $l=4$ superimposes directly upon the zero layer, the reciprocal lattice point 004 lies directly over the 200 point on a^{*}, i.e.

$$
4 c^{*} \cos \beta^{*}=2 a^{*} \text { or } a \cos (180-\beta)=c / 2
$$

Figs. 1 and 2 show the arrangement of the various layers of the reciprocal lattice and Fig. 3 the relationship between the true monoclinic cell and the pseudo-tetragonal cells.

Fig. 3. Relationship between pseudo-tetragonal cells and true monoclinic cell. The c axis has been elongated for clarity.

For the pseudo-tetragonal cell (a_{1}, a_{1}, c) the $h k l$ reflexions on the zero and even layers were present only for $(h+k+l)=2 n$, whilst for the smaller tetragonal cell ($a_{1}, a_{1}, c / 2$) the same reflexions were indexed for $h k l$ all even or all odd. This face-centred pseudo-tetragonal cell corresponds to the smaller body centred cell ($a_{2}, a_{2}, c / 2$). For the monoclinic cell, the $h k l$ reflexions are present only for $(h+k)=2 n$ and there are no other
systematic absences; the space group is therefore $C 2, C m$, or $C 2 / m$. No attempt has been made to distinguish between them.

From single-crystal photographs
$a \sin \beta=b=8.86 \pm 0.01, a=9.65 \pm 0.01, c=7.71 \pm 0.01 \AA$,

$$
\beta=113 \cdot 4 \pm 0 \cdot 2^{\circ}, \quad V=604 \AA^{3} .
$$

Chemical analysis: Co $26 \cdot 10 \%$, Mo 43.95%.
Theoretical analysis for CoMoO_{4} : $\mathrm{Co} 26.94 \%$, Mo 43.83%. Highest measured density of powder $=4.64$ g.cm..$^{-3}$.
Theoretical density for 8 molecules $/ \mathrm{cell}=4 \cdot 79 \mathrm{~g} . \mathrm{cm} .^{-3}$.
The unusual lattice geometry of the crystal causes great simplification of the general expression for the monoclinic system, $\sin ^{2} \theta=h^{2} A+k^{2} B+l^{2} C+h l D$, where A, B and D are now equal or nearly so. In an attempt to decide whether there were real differences between A, B and D, a least-squares analysis was made of the $\sin ^{2} \theta$ values obtained from powder photographs taken in a 114.6 mm . diameter camera using $\mathrm{Cu} K \alpha$ and $\mathrm{Cr} K \alpha$ radiations. The greater dispersive power of $\mathrm{Cr} K \alpha$ was used to separate several very close reflexions, and the $\sin ^{2} \theta_{\mathrm{Cr} K \alpha}$ values were finally converted to $\sin ^{2} \theta_{\mathrm{Cu} K \alpha}$. A mean of both sets was used in the analysis. Table 1 sets out the diffraction data; those reflexions marked *, which could be indexed unequivocally from the singlecrystal data, were used for the analysis. The twenty-two reflexions so used were indexed with 40 sets of $h k l$. Three analyses were made under the following conditions (i) $A \neq B \neq D$, (ii) $A=B \neq D$, (iii) $A=B=D$. The derived constants A, B, C and D, shown in Table 2, are very close for each case but the residual standard error is least when $A=B=D$. In the absence of more accurate data, such as might be provided by a focusing camera, the relations $a \sin \beta=b$ and $a \cos (180-\beta)=c / 2$ have been taken to be exact and the list of $\sin ^{2} \theta_{c}$ compiled on this assumption. Because of the equivalent values of $\sin ^{2} \theta$ for several sets of $h k l$ not all the planes whose indices are listed would necessarily contribute to a reflexion on the powder photograph.

The X-ray data for nickel molybdate, NiMoO_{4} (Brenner, 1955) have been quoted as being best fitted by a tetragonal cell and a comparison of the data for CoMoO_{4} with that for NiMoO_{4} (ASTM 9-175) suggested that the structures might be isomorphous. A sample of NiMoO_{4} was therefore prepared by roasting together stoichiometric proportions of nickel oxide and molybdenum trioxide. At least

Table 2.

	$\mathrm{Cu} K \alpha=1.5418 \AA$					
	CoMMOO_{4}			NiMoO_{4}		
	$A \neq B \neq D$	$A=B \neq D$	$A=B=D$	$A \neq B \neq D$	$A=B \neq D$	$A=B=D$
A	$0 \cdot 007570$	0.007581	$0 \cdot 007581]$	$0 \cdot 007767$	$0 \cdot 007771$	$0 \cdot 007771$
B	0.007586			0.007775		
D	0.007589	$0 \cdot 007593$		0.007770	$0 \cdot 007773$,
C	0.011784	0.011782	0.011775	0.011988	0.011987	0.011986
a	$9 \cdot 675 \AA$	$9 \cdot 668$ A	$9 \cdot 666$ A	$9.555 \AA$	$9.555 \AA$	$9 \cdot 555 \AA$
$a \sin \beta$	$8 \cdot 860$	$8 \cdot 854$	$8 \cdot 854$	$8 \cdot 747$	$8 \cdot 745$	$8 \cdot 745$
b	8.851	$8 \cdot 854$	$8 \cdot 854$	$8 \cdot 743$	$8 \cdot 745$	$8 \cdot 745$
$c \sin \beta$	7-102	$7 \cdot 102$	$7 \cdot 104$	$7 \cdot 041$	$7 \cdot 041$	$7 \cdot 042$
c	7.755	$7 \cdot 755$	7.755	$7 \cdot 691$	$7 \cdot 693$	$7 \cdot 694$
β	$113^{\circ} 41^{\prime}$	$113^{\circ} 41^{\prime}$	$113^{\circ} 39^{\prime}$	$113^{\circ} 44^{\prime}$	$113^{\circ} 45^{\prime}$	$113^{\circ} 45^{\prime}$

4 hr . heating at $750{ }^{\circ} \mathrm{C}$. or 2 hr . at $800-820^{\circ} \mathrm{C}$. was found to be necessary. The powder pattern was almost identical with that of cobalt molybdate apart from a slight increase in θ values. The same least-squares analysis of the $\sin ^{2} \theta$ values again indicated that the constants A, B and D were equal. The data are tabulated in Tables 1 and 2. The calculated and measured densities of nickel molybdate are $4.94 \mathrm{~g} . \mathrm{cm} .^{-3}$ and 4.91 g.cm. ${ }^{-3}$ respectively.

These two molybdates have a different crystal structure from the tungstate analogues, which belong to an isomorphous series $R \mathrm{WO}_{4}$, where $R=\mathrm{Co}, \mathrm{Fe}, \mathrm{Mg}, \mathrm{Ni}$ and Zn . Until the iron, magnesium and zinc molybdates have
been formed it is not possible to conclude whether a similar isomorphous molybdate series does exist. (The data are being sent to Prof. A. J. C. Wilson (Cardiff) for inclusion in the X-ray Powder Data File).

The author wishes to thank the Chairman and Directors of The British Petroleum Company Limited, for permission to publish this paper.

References

Brenner, S. S. (1955). J. Electrochem. Soc. 102, 7. Smith, G. W. (1960). Nature, Lond. 188, 306.

Acta Cryst. (1962). 15, 1057
Crystallographic data for \boldsymbol{N}-Benzyldithiocyanopyrrole. By C. E. Pfluger, Department of Chemistry, University of Illinois, Urbana, Illinois, U.S.A.
(Received 7 May 1962)

Preliminary X-ray crystallographic data were gathered for N-Benzyldithiocyanopyrrole during the search for a dithiocyanated pyrrole whose unit cell dimensions and symmetry would allow a rapid determination by twodimensional Patterson and Fourier methods of the substitution position of the thiocyanate groups on the pyrrole ring. Chemical proof of structure (Matteson \& Snyder, 1957) has indicated the substitution to be β, that is two carbons removed from the nitrogen, whereas $N M R$ spectra (Gronowitz, Hörnfeldt, Gestblom \& Hoffman, 1961) point strongly to α substitution.

Crystals were grown by slow cooling of a saturated 95% ethanol solution. They appeared as transparent light brown colored orthorhombic prisms, elongated in the direction subsequently designated as the b axis. Rotation, Weissenberg and precession photographs (Cu K α radiation) showed the crystals to be orthorhombic and having the following cell dimensions:

$$
\begin{gathered}
a_{0}=17 \cdot 26 \pm 0 \cdot 01, b_{0}=10 \cdot 22 \pm 0 \cdot 01 \\
c_{0}=14 \cdot 54 \pm 0.01 \AA .
\end{gathered}
$$

The space group was unambiguously determined to be $P b c a-D_{2 h}^{15}$ by noting the systematic absences of reflection on Weissenberg and precession photographs. The density was experimentally determined by flotation to be 1.396 g.cm. ${ }^{-3}$ which agrees closely with a calculated density of
1.405 g.cm..$^{-3}$ for a unit cell containing 8 molecules. The molecules are thus in general positions.

During the course of the X-ray investigation, it was observed that all photographs exhibited a very sharp fall-off in the diffracted intensities, with virtually no recorded diffraction occurring at interplanar spacings shorter than $1 \cdot 2 \AA$. It was thought that this was indicative of rather large temperature motions, however intensity measurements made at $-140{ }^{\circ} \mathrm{C}$. using the General Electric Single Crystal Orienter (Cu $K \alpha$ radiation) and Precession Photographs (Mo K α radiation) showed only a small amount of sharpening, thus ruling out the possibility of large thermal motions. On the basis of the low temperature data, it must be concluded that the observed sharp fall-off in intensities is not due to excessive thermal motions but rather very likely due to stacking disorders.

No further work on this compound is contemplated at this time.

References

Gronowitz, S., Hörnfeldt, A. B., Gestblom, B. \& Hoffman, R. A. (1961). J. Organic Chem. 26, 2615. Matteson, D. S. \& Snyder, H. R. (1957). J. Organic Chem. 22, 1500.

